
Artificial Intelligence

Logical Agents

Knowledge-based agents

“Logical AI:

The idea is that an agent can represent knowledge of its world,

its goals and the current situation by sentences in logic and decide

what to do by inferring that a certain action or course of action is

appropriate to achieve its goals.”

John McCarthy in Concepts of logical AI, 2000.

http://www-formal.stanford.edu/jmc/concepts-ai/concepts-ai.html

Knowledge-based agents

Credit: Courtesy Percy Liang

Knowledge-based agents

• Intelligent agents need knowledge about the world to choose

good actions/decisions.

• Knowledge = {sentences} in a knowledge representation lan-

guage (formal language).

• A sentence is an assertion about the world.

• A knowledge-based agent is composed of:

1. Knowledge base: domain-specific content.

2. Inference mechanism: domain-independent algorithms.

Knowledge-based agents

• The agent must be able to:

– Represent states, actions, etc.

– Incorporate new percepts

– Update internal representations of the world

– Deduce hidden properties of the world

– Deduce appropriate actions

Knowledge-based agents

• The agent must be able to:

– Represent states, actions, etc.

– Incorporate new percepts

– Update internal representations of the world

– Deduce hidden properties of the world

– Deduce appropriate actions

• Declarative approach to building an agent:

– Add new sentences: Tell it what it needs to know

– Query what is known: Ask itself what to do - answers

should follow from the KB

Knowledge-based agents

The Wumpus World

Gregory Yob (1975)

The Wumpus World
• 4 X 4 grid of rooms

• Squares adjacent to Wumpus are

smelly and squares adjacent to pit

are breezy

• Glitter iff gold is in the same square

• Shooting kills Wumpus if you are

facing it

• Wumpus emits a horrible scream

when it is killed that can be heard

anywhere

• Shooting uses up the only arrow

• Grabbing picks up gold if in same

square

• Releasing drops the gold in same

square

Wumpus World PEAS

• Performance measure: gold +1000, death (eaten or falling

in a pit) -1000, -1 per action taken, -10 for using the arrow.

The games ends either when the agent dies or comes out of

the cave.

• Environment

– 4 X 4 grid of rooms

– Agent starts in square [1,1] facing to the right

– Locations of the gold, and Wumpus are chosen randomly

with a uniform distribution from all squares except [1,1]

– Each square other than the start can be a pit with proba-

bility of 0.2

Wumpus World PEAS

• Actuators:

– Left turn, Right turn, Forward, Grab, Release, Shoot

• Sensors:

– Stench, Breeze, Glitter, Bump, Scream

– Represented as a 5-element list

– Example: [Stench, Breeze, None, None, None]

Wumpus World properties

• Partially observable

• Static

• Discrete

• Single-agent

• Deterministic

• Sequential

Exploring Wumpus World

Agent’s first steps:

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK = Safe square

V = Visited

A

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

OKOK
B

P?

P?A

OK OK

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

(a) (b)

Exploring Wumpus World

Agent’s later steps:

BB P!

A

OK OK

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

OK

W!

V
P!

A

OK OK

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

S

OK

W!

V

V V

B
S G

P?

P?

(b)(a)

S

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK = Safe square

V = Visited

Logic

• Knowledge base: a set of sentences in a formal representa-

tion, logic

• Logics: are formal languages for representing knowledge to

extract conclusions

– Syntax: defines well-formed sentences in the language

– Semantic: defines the truth or meaning of sentences in a

world

• Inference: a procedure to derive a new sentence from other

ones.

• Logical entailment: is a relationship between sentences. It

means that a sentence follows logically from other sentences

KB |= α

Propositional logic
• Propositional logic (PL) is the simplest logic.

• Syntax of PL: defines the allowable sentences or propositions.

• Definition (Proposition): A proposition is a declarative state-

ment that’s either True or False.

• Atomic proposition: single proposition symbol. Each symbol

is a proposition. Notation: upper case letters and may contain

subscripts.

• Compound proposition: constructed from from atomic

propositions using parentheses and logical connectives.

Atomic proposition
Examples of atomic propositions:

• 2+2=4 is a true proposition

• W1,3 is a proposition. It is true if there is a Wumpus in [1,3]

• “If there is a stench in [1,2] then there is a Wumpus in [1,3]”

is a proposition

• “How are you?” or “Hello!” are not propositions. In general,

statement that are questions, commands, or opinions are not

propositions.

Compound proposition
Examples of compound/complex propositions:

Let p, p1, and p2 be propositions

• Negation ¬p is also a proposition. We call a literal either

an atomic proposition or its negation. E.g., W1,3 is a positive

literal, and ¬W1,3 is a negative literal.

• Conjunction p1 ∧ p2. E.g., W1,3 ∧ P3,1

• Disjunction p1 ∨ p2 E.g., W1,3 ∨ P3,1

• Implication p1 → p2. E.g., W1,3 ∧ P3,1 → ¬W2,2

• If and only if p1 ↔ p2. E.g., W1,3 ↔ ¬W2,2

Truth tables

• The semantics define the rules to determine the truth of a

sentence.

• Semantics can be specified by truth tables.

• Boolean values domain: T,F

• n-tuple: (x1, x2, ..., xn)

• Operator on n-tuples : g(x1 = v1, x2 = v2, ..., xn = vn)

• Definition: A truth table defines an operator g on n- tuples by

specifying a boolean value for each tuple

• Number of rows in a truth table? R = 2n

Building propositions

Negation:

Building propositions

Conjunction:

Building propositions

Disjunction:

Building propositions

Exclusive or:

Building propositions

Implication:

Building propositions

Biconditional or If and only if (IFF):

Precedence of operators

• Just like arithmetic operators, there is an operator precedence

when evaluating logical operators as follows:

1. Expressions in parentheses are processed (inside to outside)

2. Negation

3. AND

4. OR

5. Implication

6. Biconditional

7. Left to right

• Use parentheses whenever you have any doubt!

Building propositions

Logical equivalence

• Two propositions p and q are logically equivalent if and only if

the columns in the truth table giving their truth values agree.

• We write this as p⇔ q or p ≡ q.

Properties of operators

• Commutativity: p ∧ q = q ∧ p p ∨ q = q ∨ p

• Associativity: (p∧ q)∧ r = p∧ (q ∧ r) (p∨ q)∨ r = p∨ (q ∨ r)

• Identity element: p ∧ True = p p ∨ True = True

• ¬(¬p) = p

• p ∧ p = p p ∨ p = p

• Distributivity:

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

• p ∧ (¬p) = False and p ∨ (¬p) = True

• DeMorgan’s laws:

¬(p ∧ q) = (¬p) ∨ (¬q)
¬(p ∨ q) = (¬p) ∧ (¬q)

Tautology and contradiction

• Tautology is a proposition which is always true

• Contradiction is a proposition which is always false

• Contingency is a proposition which is neither a tautology or

a contradiction

Contrapositive, inverse, etc.

• Given an implication p→ q

• The converse is: q → p

• The contrapositive is: ¬q → ¬p

• The inverse is: ¬p→ ¬q

Contrapositive, inverse, etc.

• Given an implication p→ q

• The converse is: q → p

• The contrapositive is: ¬q → ¬p

• The inverse is: ¬p→ ¬q

Example: Hot is a sufficient condition for my going to the beach.

• The implication is:

• The converse is:

• The contrapositive is:

• The inverse is:

Inference (Modus Ponens)

p p→ q

q

Inference (Modus Ponens)

p p→ q

q

warm warm→ sunny

sunny

Inference (Modus Ponens)

Horn clauses: a proposition of the form:

p1 ∧ . . . ∧ pn → q

Modus Ponens deals with Horn clauses:

p1, . . . , pn (p1 ∧ . . . ∧ pn)→ q

q

Inference (Modus Tollens)

¬q p→ q

¬p

Inference (Modus Tollens)

¬q p→ q

¬p

¬beach hot→ beach

¬hot

Common Rules

Truth Tables for connectives
Summary:

Wumpus world KB
Let’s build the KB for the reduced Wumpus world.

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK = Safe square

V = Visited

A

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

OKOK
B

P?

P?A

OK OK

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

(a) (b)

• Let Pi,j be true if there is a pit in [i, j]

• Let Bi,j be true if there is a breeze in [i, j]

¬P1,1

• “A square is breezy if and only if there is an adjacent pit”

B1,1 ⇔ P1,2 ∨ P2,1

B2,1 ⇔ P1,1 ∨ P2,2 ∨ P3,1

¬B1,1

B2,1

Wumpus world KB
Let’s build the KB for the reduced Wumpus world.

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK = Safe square

V = Visited

A

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

OKOK
B

P?

P?A

OK OK

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

(a) (b)

• Let Pi,j be true if there is a pit in [i, j]

• Let Bi,j be true if there is a breeze in [i, j]

R1: ¬P1,1

• “A square is breezy if and only if there is an adjacent pit”

R2: B1,1 ⇔ P1,2 ∨ P2,1

R3: B2,1 ⇔ P1,1 ∨ P2,2 ∨ P3,1

R4: ¬B1,1

R5: B2,1

Wumpus world KB
Let’s build the KB for the reduced Wumpus world.

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK = Safe square

V = Visited

A

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

OKOK
B

P?

P?A

OK OK

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

(a) (b)

• Let Pi,j be true if there is a pit in [i, j]

• Let Bi,j be true if there is a breeze in [i, j]

R1: ¬P1,1

• “A square is breezy if and only if there is an adjacent pit”

R2: B1,1 ⇔ P1,2 ∨ P2,1

R3: B2,1 ⇔ P1,1 ∨ P2,2 ∨ P3,1

R4: ¬B1,1

R5: B2,1

Questions: Based on this KB, is KB |= P1,2? Is KB |= P2,2?

Entailment and Inference

• Semantics: Determine entailment by Model Checking, that

is enumerate all models and show that the sentence α must

hold in all models.

KB |= α

• Syntax: Determine entailment by Theorem Proving, that is

apply rules of inference to KB to build a proof of α without

enumerating and checking all models.

KB ` α

• But how are entailment and inference related?

Soundness & Completeness

• We want an inference algorithm that is:

1. Sound: does not infer false formulas, that is, derives only

entailed sentences.

{α|KB ` α} ⊆ {KB |= α}

2. Complete: derives ALL entailed sentences.

{α|KB ` α} ⊇ {KB |= α}

Validity & satisfiability

• A sentence is valid (aka tautology) if it is true in all models,

e.g., True, p ∨ ¬p, p⇒ p, (p ∧ (p⇒ q))⇒ q

• Validity is connected to inference via the Deduction Theorem:

KB |= α IFF (KB ⇒ α) is valid

• A sentence is satisfiable if it is true in some model

e.g., p ∨ q, r

• A sentence is unsatisfiable if it is true in no models

e.g., p ∧ ¬p

• Satisfiability is connected to inference via the following:

KB |= α IFF (KB ∧ ¬α) is unsatisfiable

i.e., prove α by contradiction

Determining entailment

• Given a Knowledge Base (KB) (set of sentences in PL), given

a query α, output whether KB entails α, noted: KB |= α

• We will see two ways of doing proofs in PL:

– Model checking enumerate the models (truth table enu-

meration, exponential).

– Application of inference rules (proof checking/theorem

proving): Syntactic derivations with rules like Modus Po-

nens (Backward chaining and forward chaining). A proof is

a sequence of inference rule applications.

Model Checking
• Truth Table for inference

• Model: assignment T/F to every propositional symbol.

• Check that α is true in every model in which KB is true.

Model Checking
• Truth Table for inference

• Model: assignment T/F to every propositional symbol.

• Check that α is true in every model in which KB is true.

Inference: Wumpus world
R1: ¬P1,1

R2: B1,1 ⇔ P1,2 ∨ P2,1

R3: B2,1 ⇔ P1,1 ∨ P2,2

R4: ¬B1,1

R5: B2,1

Inference as a search problem

• Initial state: The initial KB

• Actions: all inference rules applied to all sentences that match

the top of the inference rule

• Results: add the sentence in the bottom half of the inference

rule

• Goal: a state containing the sentence we are trying to prove.

Theorem proving

• Search for proofs is a more efficient way than enumerating

models (We can ignore irrelevant information)

• Truth tables have an exponential number of models.

• The idea of inference is to repeat applying inference rules to

the KB.

• Inference can be applied whenever suitable premises are found

in the KB.

• Inference is sound. How about completeness?

Theorem proving

• Two ways to ensure completeness:

– Proof by resolution: use powerful inference rules (resolu-

tion rule)

– Forward or Backward chaining: use of modus ponens on

a restricted form of propositions (Horn clauses)

• Resolution: ONE single inference rule

• Invented by Robinson, 1965

• Resolution + Search = complete inference algorithm.

Proof by Resolution
• Resolution & Wumpus world:

BB P!

A

OK OK

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

OK

W!

V
P!

A

OK OK

OK
 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

S

OK

W!

V

V V

B
S G

P?

P?

(b)(a)

S

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK = Safe square

V = Visited

Proof by Resolution

• Unit resolution:

`1 ∨ · · · ∨ `k m

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k
where `i and m are complementary literals.

• Example:

P1,3 ∨ P2,2 ¬P2,2

P1,3

• We call a clause a disjunction of literals.

• Unit resolution: Clause + Literal = New clause.

Proof by Resolution

• Resolution inference rule (for CNF):

`1 ∨ · · · ∨ `k m1 ∨ · · · ∨mn

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

where `i and mj are complementary literals.

• Resolution applies only to clauses

• Fact: Every sentence in PL is logically equivalent to a con-

junction of clauses.

• Conjunctive Normal Form (CNF): Conjunction of disjunction

of literals:

• Example: (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF): sound and complete for

propositional logic

Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α⇔ β with (α⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α⇔ β with (α⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

2. Eliminate ⇒, replacing α⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1)

Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α⇔ β with (α⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

2. Eliminate ⇒, replacing α⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1)

3. Move ¬ inwards using de Morgans rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨B1,1)

Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α⇔ β with (α⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

2. Eliminate ⇒, replacing α⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1)

3. Move ¬ inwards using de Morgans rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨B1,1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨B1,1) ∧ (¬P2,1 ∨B1,1)

Resolution algorithm

Resolution example

KB = R4 ∧R2 = (B1,1 ⇔ P1,2 ∨ P2,1) ∧ ¬B1,1

α = ¬P1,2

Forward/backward chaining

• KB = conjunction of Horn clauses

• Horn clauses: logic proposition of the form: p1 ∧ . . . ∧ pn → q

• Modus Ponens (for Horn Form): complete for Horn KBs

p1, . . . , pn p1 ∧ . . . ∧ pn→ q

q

• Can be used with forward chaining or backward chaining.

• These algorithms are very natural and run in linear time

Forward chaining

Idea:

Fire any rule whose premises are satisfied in the KB, add its con-

clusion to the KB, until query is found

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Backward chaining

Idea: Works backwards from the query q

• to prove q by Backward Chaining:

– Check if q is known already, or

– Prove by Backward Chaining all premises of some rule con-

cluding q

• Avoid loops: check if new subgoal is already on the goal stack

• Avoid repeated work: check if new subgoal

– has already been proved true, or

– has already failed

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Forward vs. Backward

• Forward chaining:

- Data-driven, automatic, unconscious processing,

- May do lots of work that is irrelevant to the goal

• Backward chaining:

- Goal-driven, appropriate for problem-solving,

• Complexity of BC can be much less than linear in size of KB

Propositional Logic
• Propositional Logic (PL) is a formal language to describe the

world around us.

• Logic can be used by an agent to model the world.

• Sentences in PL have a fixed syntax.

• With symbols and connectives we can form logical sentences:

– Symbols or terms that can be either True or False or un-

known.

– Logical connectives

Example: hot ∧ sunny ⇒ beach ∨ pool

• Syntax and Semantic represent two important and distinct

aspects in PL.

• Semantic: configurations/instantiations of the world.

Propositional Logic
• Modus Ponens inference rule:

p1, . . . , pn, (p1 ∧ . . . ∧ pn)→ q

q

• Example:
Warm Warm→Sunny

Sunny

• Modus Ponens deals with Horn clauses

• Horn clauses: logic proposition of the form: p1 ∧ . . . ∧ pn → q

• Inference: we want an inference algorithm that is:

1. sound (does not infer false formulas), and

2. ideally, complete too (derives all true formulas).

• Inference in PL with horn clauses is sound and complete.

Propositional Logic

• Limits of PL?

1. PL is not expressive enough to describe all the world around

us. It can’t express information about different object and

the relation between objects.

2. PL is not compact. It can’t express a fact for a set of

objects without enumerating all of them which is sometimes

impossible.

• Example: We have a vacuum cleaner (Roomba) to clean a

10×10 squares in the classroom. Use PL to express information

about the squares.

Propositional Logic

• The proposition square1 is clean expresses information about

square1 being clean. How can one write this in a less heavy

way?

• How can we express that all squares in the room are clean?

square1 is clean ∧ square2 is clean ∧ . . . ∧ square100 is clean

• How can we express that some squares in the room are clean?

square1 is clean ∨ square2 is clean ∨ . . . ∨ square100 is clean

• How can we express that some squares have chairs on them?

square1 has chair∨square2 has chair∨ . . .∨square100 has chair

First Order Logic
• Alternative to PL: Another more powerful language, First Or-

der Logic (FOL).

• Syntax of FOL:

– Terms are either:

∗ Constants symbols (e.g., A, 10, Columbia),

∗ Variables (e.g., x, y)

∗ Functions of terms, e.g., sqrt(x), sum(1,2).

– Atomic formulas: predicates applied to terms, e.g.,

brother(x,y), above(A,B)

– Connectives: ∧, ∨, ⇒, ⇔, ¬
– Equality: =

– Quantifiers: ∀ ∃
– Connectives, equality, quantifiers can be applied to atomic

formulas to create sentences in FOL.

First Order Logic

All squares are clean:

∀ x Square(x) ⇒ Clean(x)

There exists some dirty squares:

∃ x Square(x) ∧ ¬Clean(x)

Question: Now, can we express that some squares have

chairs on top?

Note:

• ∀x P (x) is like P (A) ∧ P (B) ∧ . . .
• ∃x P (x) is like P (A) ∨ P (B) ∨ . . .
• ¬∀x P (x) is like ∃ x ¬P (x)

• ∀x ∃ y likes(x, y) is NOT like ∃y ∀x likes(x, y)

First Order Logic
• All birds fly:

∀ x bird(x) ⇒ Fly(x)

• All birds except penguins fly:

∀ x bird(x) ∧ ¬penguin(x)⇒ Fly(x)

• Every kid likes candy:

∀ x Kid(x) ⇒ Likes(x, candy)

• Some kids like candy:

∃ x Kid(x) ∧ Likes(x, candy)

• Brothers are sibling:

∀x, y Brothers(x, y) ⇒ Sibling(x, y)

• One’s mother is one’s female parent:

∀x, y Mother(x, y)⇔ Female(x) ∧ Parent(x, y)

First Order Logic

Inference: While a bit more complicated than PL, there are

procedures to do inference with a knowledge base of FOL formulas

(Further optional reading: book chapter 8, 9).

Natural language: The expressiveness of FOL suggests that it is

possible to automate the conversion between natural language and

logical expressions. This is very valuable for different applications,

such as personal assistants (Siri), question/answering systems, and

communicating with computers in general.

Summary
• Logical agents apply inference to a knowledge base to derive

new information and make decisions

• Basic concepts of logic:

– Syntax: formal structure of sentences

– Semantics: truth of sentences wrt models

– Entailment: necessary truth of one sentence given another

– Inference: deriving sentences from other sentences

– Soundness: derivations produce only entailed sentences

– Completeness: derivations can produce all entailed sen-

tences

• Wumpus world requires the ability to represent partial and

negated information, reason by cases, etc.

• Forward, backward chaining are linear in time, complete for

Horn clauses Resolution is complete for propositional logic.

Summary

• Building logical agents was a main research trend in AI before

the mid-nineties

• Logic is used in AI to represent the environment of the agent

and reason about that environment

• Pros and cons of logical agents:

- Do not handle uncertainty, probability does

- Rule-based and do not use data, ML does

- It is hard to model every aspect of the world

+ Intelligibility of models: models are encoded explicitly

John McCarthy

John McCarthy, 1927 - 2011

• Remember, he coined the term Artificial Intelligence

• He invented Lisp, also invented timeshared computing

• He won the ACM Turing award, and was awarded the Kyoto

Prize

• Founder of Logical intelligent systems with declarative knowl-

edge in his seminal paper: “Programs with common sense”,

1959.

http://www.nasonline.org/publications/biographical-memoirs/

memoir-pdfs/mccarthy-john.pdf

Credit

• Artificial Intelligence, A Modern Approach. Stuart Russell and

Peter Norvig. Third Edition. Pearson Education.

http://aima.cs.berkeley.edu/

