Artificial Intelligence

Logical Agents

Knowledge-based agents

"Logical AI:

The idea is that an agent can represent knowledge of its world, its goals and the current situation by sentences in logic and decide what to do by inferring that a certain action or course of action is appropriate to achieve its goals."

John McCarthy in Concepts of logical AI, 2000.
http://www-formal.stanford.edu/jmc/concepts-ai/concepts-ai.html

Knowledge-based agents

	Search problems	
Markov decision processes	Constraint satisfaction problems	
Reflex	Adversarial games	Bayesian networks

Knowledge-based agents

- Intelligent agents need knowledge about the world to choose good actions/decisions.
- Knowledge $=\{$ sentences $\}$ in a knowledge representation language (formal language).
- A sentence is an assertion about the world.
- A knowledge-based agent is composed of:

1. Knowledge base: domain-specific content.
2. Inference mechanism: domain-independent algorithms.

Knowledge-based agents

- The agent must be able to:
- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden properties of the world
- Deduce appropriate actions

Knowledge-based agents

- The agent must be able to:
- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden properties of the world
- Deduce appropriate actions
- Declarative approach to building an agent:
- Add new sentences: Tell it what it needs to know
- Query what is known: Ask itself what to do - answers should follow from the KB

Knowledge-based agents

function KB-AgEnT(percept) returns an action
static: $K B$, a knowledge base
t, a counter, initially 0 , indicating time
Tell($K B$, Make-Percept-Sentence (percept, t))
action $\leftarrow \operatorname{Ask}(K B, \operatorname{Make}-\operatorname{Action}-\operatorname{Query}(t))$
Tell(KB, Make-Action-Sentence(action, t))
$t \leftarrow t+1$
return action

The Wumpus World

	Gregory Yob (1975)			
4	S 5 Stench 55		=Breeze=	PIT
3		$\begin{aligned} & =\text { Breeze } \\ & 555555 \\ & 5 \text { Stench } \\ & \text { 111 } \\ & - \text { Gold } \end{aligned}$	PIT	$=\text { Breeze }=$
2	\sum_{5}^{55555} Stench 5		$=\text { Breeze }=$	
1	STAT	$=\text { Breeze }$	PIT	$=\text { Breeze }=$
	1	2	3	4

The Wumpus World

- 4×4 grid of rooms
- Squares adjacent to Wumpus are smelly and squares adjacent to pit ${ }^{4}$ are breezy
- Glitter iff gold is in the same square ${ }^{3}$
- Shooting kills Wumpus if you are facing it
- Wumpus emits a horrible scream when it is killed that can be heard ${ }_{1}$ anywhere
- Shooting uses up the only arrow

- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Wumpus World PEAS

- Performance measure: gold +1000 , death (eaten or falling in a pit) -1000, -1 per action taken, -10 for using the arrow. The games ends either when the agent dies or comes out of the cave.
- Environment
-4×4 grid of rooms
- Agent starts in square [1,1] facing to the right
- Locations of the gold, and Wumpus are chosen randomly with a uniform distribution from all squares except [1,1]
- Each square other than the start can be a pit with probability of 0.2

Wumpus World PEAS

- Actuators:
- Left turn, Right turn, Forward, Grab, Release, Shoot
- Sensors:
- Stench, Breeze, Glitter, Bump, Scream
- Represented as a 5-element list
- Example: [Stench, Breeze, None, None, None]

Wumpus World properties

- Partially observable
- Static
- Discrete
- Single-agent
- Deterministic
- Sequential

Exploring Wumpus World

Agent's first steps:

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
OK			
1,2 A OK	2,1	3,1	4,1
OK		4,2	

(a)

\mathbf{A}	$=$ Agent
\mathbf{B}	$=$ Breeze
\mathbf{G}	$=$ Glitter, Gold
$\mathbf{O K}$	$=$ Safe square
\mathbf{P}	$=$ Pit
\mathbf{S}	$=$ Stench
\mathbf{V}	$=$ Visited
\mathbf{W}	$=$ Wumpus

(b)

Exploring Wumpus World

Agent's later steps:

1,4	2,4	3,4	4,4	$\begin{array}{ll} \hline \mathbf{A} & =\text { Agent } \\ \mathbf{B} & =\text { Breeze } \\ \mathbf{G} & =\text { Glitter, Gold } \\ \mathbf{O K} & =\text { Safe square } \end{array}$
$1,3 \mathbf{W}!$	2,3	3,3	4,3	$\begin{array}{ll} \mathbf{P} & =\text { Pit } \\ \mathbf{S} & =\text { Stench } \\ \mathbf{V} & =\text { Visited } \\ \mathbf{W} & =\text { Wumpus } \end{array}$
$\begin{array}{\|c} \hline 1,2 \\ \hline \mathbf{A} \\ \mathbf{S} \\ \mathbf{O K} \end{array}$	$2,2$ OK	3,2	4,2	
$\begin{array}{\|cc\|} \hline 1,1 & \\ & \\ & \mathbf{V} \\ & \text { OK } \end{array}$	$\begin{array}{\|cc\|} \hline 2,1 & \\ & \mathbf{B} \\ & \mathbf{V} \\ & \mathbf{O K} \end{array}$	${ }^{3,1} \mathbf{P}$!	4,1	

(a)

1,4	${ }^{2,4} \mathbf{P}$?	3,4	4,4
${ }^{1,3} \mathbf{W}$!	$\begin{gathered} 2,3 \\ \underset{\mathbf{S}}{\mathbf{A}} \mathbf{G} \\ \mathbf{B} \end{gathered}$	${ }^{3,3} \mathbf{P}$?	4,3
$\begin{array}{\|rc\|} \hline 1,2 & \\ \mathbf{S} \\ \mathbf{V} \\ \mathbf{O K} \end{array}$	$\begin{array}{\|cc\|} \hline 2,2 & \\ & \mathbf{V} \\ & \mathbf{O K} \end{array}$	3,2	4,2
$\begin{array}{\|rc\|} \hline 1,1 & \\ & \mathrm{~V} \\ & \text { OK } \end{array}$	$\begin{array}{\|cc\|} \hline 2,1 & \\ & \mathbf{B} \\ & \mathbf{V} \\ \mathbf{O K} \end{array}$	${ }^{3,1} \mathbf{P}$!	4,1

(b)

Logic

- Knowledge base: a set of sentences in a formal representation, logic
- Logics: are formal languages for representing knowledge to extract conclusions
- Syntax: defines well-formed sentences in the language
- Semantic: defines the truth or meaning of sentences in a world
- Inference: a procedure to derive a new sentence from other ones.
- Logical entailment: is a relationship between sentences. It means that a sentence follows logically from other sentences

$$
K B \models \alpha
$$

Propositional logic

- Propositional logic (PL) is the simplest logic.
- Syntax of PL: defines the allowable sentences or propositions.
- Definition (Proposition): A proposition is a declarative statement that's either True or False.
- Atomic proposition: single proposition symbol. Each symbol is a proposition. Notation: upper case letters and may contain subscripts.
- Compound proposition: constructed from from atomic propositions using parentheses and logical connectives.

Atomic proposition

Examples of atomic propositions:

- $2+2=4$ is a true proposition
- $W_{1,3}$ is a proposition. It is true if there is a Wumpus in $[1,3]$
- "If there is a stench in [1,2] then there is a Wumpus in $[1,3]$ " is a proposition
- "How are you?" or "Hello!" are not propositions. In general, statement that are questions, commands, or opinions are not propositions.

Compound proposition

Examples of compound/complex propositions:

Let p, p_{1}, and p_{2} be propositions

- Negation $\neg p$ is also a proposition. We call a literal either an atomic proposition or its negation. E.g., $W_{1,3}$ is a positive literal, and $\neg W_{1,3}$ is a negative literal.
- Conjunction $p_{1} \wedge p_{2}$. E.g., $W_{1,3} \wedge P_{3,1}$
- Disjunction $p_{1} \vee p_{2}$ E.g., $W_{1,3} \vee P_{3,1}$
- Implication $p_{1} \rightarrow p_{2}$. E.g., $W_{1,3} \wedge P_{3,1} \rightarrow \neg W_{2,2}$
- If and only if $p_{1} \leftrightarrow p_{2}$. E.g., $W_{1,3} \leftrightarrow \neg W_{2,2}$

Truth tables

- The semantics define the rules to determine the truth of a sentence.
- Semantics can be specified by truth tables.
- Boolean values domain: T,F
- n-tuple: $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Operator on n-tuples : $g\left(x_{1}=v_{1}, x_{2}=v_{2}, \ldots, x_{n}=v_{n}\right)$
- Definition: A truth table defines an operator g on n - tuples by specifying a boolean value for each tuple
- Number of rows in a truth table? $R=2^{n}$

Building propositions

Negation:

Building propositions

Conjunction:

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Building propositions

Disjunction:

p	q	$p \mathrm{Vq}$
T	T	T
T	F	T
F	T	T
F	F	F

Building propositions

Exclusive or:

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

Building propositions

Implication:

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Building propositions

Biconditional or If and only if (IFF):

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Precedence of operators

- Just like arithmetic operators, there is an operator precedence when evaluating logical operators as follows:

1. Expressions in parentheses are processed (inside to outside)
2. Negation
3. AND
4. OR
5. Implication
6. Biconditional
7. Left to right

- Use parentheses whenever you have any doubt!

Building propositions

p	q	r	$\neg \mathbf{r}$	p $\vee q$ q	p $\vee q \rightarrow \neg r$
T	T	T	F	T	F
T	T	F	T	T	T
T	F	T	F	T	F
T	F	F	T	T	T
F	T	T	F	T	F
F	T	F	T	T	T
F	F	T	F	F	T
F	F	F	T	F	T

Logical equivalence

- Two propositions p and q are logically equivalent if and only if the columns in the truth table giving their truth values agree.
- We write this as $p \Leftrightarrow q$ or $p \equiv q$.

p	q	$\neg p$	$\neg p \vee q$	$p \rightarrow q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Properties of operators

- Commutativity: $p \wedge q=q \wedge p \quad p \vee q=q \vee p$
- Associativity: $(p \wedge q) \wedge r=p \wedge(q \wedge r) \quad(p \vee q) \vee r=p \vee(q \vee r)$
- Identity element: $p \wedge$ True $=p \quad p \vee$ True $=$ True
- $\neg(\neg p)=p$
- $p \wedge p=p \quad p \vee p=p$
- Distributivity:

$$
\begin{aligned}
& p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r) \\
& p \vee(q \wedge r)=(p \vee q) \wedge(p \vee r)
\end{aligned}
$$

- $p \wedge(\neg p)=$ False and $p \vee(\neg p)=$ True
- DeMorgan's laws:

$$
\begin{aligned}
& \neg(p \wedge q)=(\neg p) \vee(\neg q) \\
& \neg(p \vee q)=(\neg p) \wedge(\neg q)
\end{aligned}
$$

Tautology and contradiction

- Tautology is a proposition which is always true
- Contradiction is a proposition which is always false
- Contingency is a proposition which is neither a tautology or a contradiction

P	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$
T	F	T	F
F	T	T	F

Contrapositive, inverse, etc.

- Given an implication $p \rightarrow q$
- The converse is: $q \rightarrow p$
- The contrapositive is: $\neg q \rightarrow \neg p$
- The inverse is: $\neg p \rightarrow \neg q$

Contrapositive, inverse, etc.

- Given an implication $p \rightarrow q$
- The converse is: $q \rightarrow p$
- The contrapositive is: $\neg q \rightarrow \neg p$
- The inverse is: $\neg p \rightarrow \neg q$

Example: Hot is a sufficient condition for my going to the beach.

- The implication is:
- The converse is:
- The contrapositive is:
- The inverse is:

Inference (Modus Ponens)

$\frac{p \quad p \rightarrow q}{q}$

Inference (Modus Ponens)

$$
\frac{p \quad p \rightarrow q}{q}
$$

$\frac{\text { warm } \quad \text { warm } \rightarrow \text { sunny }}{\operatorname{sunny}}$

Inference (Modus Ponens)

Horn clauses: a proposition of the form:

$$
p_{1} \wedge \ldots \wedge p_{n} \rightarrow q
$$

Modus Ponens deals with Horn clauses:

$$
\frac{p_{1}, \ldots, p_{n} \quad\left(p_{1} \wedge \ldots \wedge p_{n}\right) \rightarrow q}{q}
$$

Inference (Modus Tollens)

$\frac{\neg q \quad p \rightarrow q}{\neg p}$

Inference (Modus Tollens)

$$
\frac{\neg \text { beach } \quad \text { hot } \rightarrow \text { beach }}{\neg \text { hot }}
$$

Common Rules

- Addition: $\quad \frac{p}{p \vee q}$
- Simplification:

$$
\begin{array}{cc}
\frac{p \wedge q}{q} & \\
& p \vee q \\
& \frac{\neg p}{q}
\end{array}
$$

- Disjunctive-syllogism:
- Hypothetical-syllogism:

$$
\begin{gathered}
p \rightarrow q \\
q \rightarrow r \\
\hline p \rightarrow r
\end{gathered}
$$

Truth Tables for connectives

Summary:

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus world KB

Let's build the KB for the reduced Wumpus world.

- Let $P_{i, j}$ be true if there is a pit in $[i, j]$
- Let $B_{i, j}$ be true if there is a breeze in $[i, j]$

$$
\neg P_{1,1}
$$

- "A square is breezy if and only if there is an adjacent pit"

$$
\begin{aligned}
& B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1} \\
& B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1} \\
& \neg B_{1,1} \\
& B_{2,1}
\end{aligned}
$$

Wumpus world KB

Let's build the KB for the reduced Wumpus world.

- Let $P_{i, j}$ be true if there is a pit in $[i, j]$
- Let $B_{i, j}$ be true if there is a breeze in $[i, j]$ $R_{1}: \neg P_{1,1}$
- "A square is breezy if and only if there is an adjacent pit"
$R_{2}: B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$
$R_{3}: B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$
$R_{4}: \neg B_{1,1}$
$R_{5}: B_{2,1}$

Wumpus world KB

Let's build the KB for the reduced Wumpus world.

- Let $P_{i, j}$ be true if there is a pit in $[i, j]$
- Let $B_{i, j}$ be true if there is a breeze in $[i, j]$
$R_{1}: \neg P_{1,1}$
- "A square is breezy if and only if there is an adjacent pit"
$R_{2}: B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$
$R_{3}: B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$
$R_{4}: \neg B_{1,1}$
$R_{5}: B_{2,1}$
Questions: Based on this KB , is $K B \models P_{1,2}$? Is $K B \models P_{2,2}$?

Entailment and Inference

- Semantics: Determine entailment by Model Checking, that is enumerate all models and show that the sentence α must hold in all models.

$$
K B \models \alpha
$$

- Syntax: Determine entailment by Theorem Proving, that is apply rules of inference to KB to build a proof of α without enumerating and checking all models.

$$
K B \vdash \alpha
$$

- But how are entailment and inference related?

Soundness \& Completeness

- We want an inference algorithm that is:

1. Sound: does not infer false formulas, that is, derives only entailed sentences.

$$
\{\alpha \mid K B \vdash \alpha\} \subseteq\{K B \models \alpha\}
$$

2. Complete: derives ALL entailed sentences.

$$
\{\alpha \mid K B \vdash \alpha\} \supseteq\{K B \models \alpha\}
$$

Validity \& satisfiability

- A sentence is valid (aka tautology) if it is true in all models, e.g., True, $p \vee \neg p, p \Rightarrow p,(p \wedge(p \Rightarrow q)) \Rightarrow q$
- Validity is connected to inference via the Deduction Theorem: $K B \models \alpha \operatorname{IFF}(K B \Rightarrow \alpha)$ is valid
- A sentence is satisfiable if it is true in some model e.g., $p \vee q, r$
- A sentence is unsatisfiable if it is true in no models e.g., $p \wedge \neg p$
- Satisfiability is connected to inference via the following: $K B \vDash \alpha \operatorname{IFF}(K B \wedge \neg \alpha)$ is unsatisfiable i.e., prove α by contradiction

Determining entailment

- Given a Knowledge Base (KB) (set of sentences in PL), given a query α, output whether KB entails α, noted: $K B \vDash \alpha$
- We will see two ways of doing proofs in PL:
- Model checking enumerate the models (truth table enumeration, exponential).
- Application of inference rules (proof checking/theorem proving): Syntactic derivations with rules like Modus Ponens (Backward chaining and forward chaining). A proof is a sequence of inference rule applications.

Model Checking

- Truth Table for inference
- Model: assignment T/F to every propositional symbol.
- Check that α is true in every model in which KB is true.

Model Checking

- Truth Table for inference
- Model: assignment T/F to every propositional symbol.
- Check that α is true in every model in which $K B$ is true.

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
\vdots												
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true						
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true							
false	true	false	false	true	false	false	true	false	false	true	true	false
\vdots												
true	false	true	true	false	true	false						

Inference: Wumpus world

$$
R_{1}: \neg P_{1,1}
$$

$R_{2}: B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$
$R_{3}: B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2}$
$R_{4}: \neg B_{1,1}$
$R_{5}: B_{2,1}$

Inference as a search problem

- Initial state: The initial KB
- Actions: all inference rules applied to all sentences that match the top of the inference rule
- Results: add the sentence in the bottom half of the inference rule
- Goal: a state containing the sentence we are trying to prove.

Theorem proving

- Search for proofs is a more efficient way than enumerating models (We can ignore irrelevant information)
- Truth tables have an exponential number of models.
- The idea of inference is to repeat applying inference rules to the KB.
- Inference can be applied whenever suitable premises are found in the KB.
- Inference is sound. How about completeness?

Theorem proving

- Two ways to ensure completeness:
- Proof by resolution: use powerful inference rules (resolution rule)
- Forward or Backward chaining: use of modus ponens on a restricted form of propositions (Horn clauses)
- Resolution: ONE single inference rule
- Invented by Robinson, 1965
- Resolution + Search $=$ complete inference algorithm.

Proof by Resolution

- Resolution \& Wumpus world:

1,4	2,4	3,4	4,4
$1,3 \mathrm{~W}!$	2,3	3,3	4,3
$\begin{array}{\|c\|} \hline 1,2 \\ \mathrm{~A} \\ \mathrm{~S} \\ \mathrm{OK} \end{array}$		3,2	4,2
$\begin{array}{\|cc\|} \hline 1,1 & \\ & \mathbf{V} \\ & \text { OK } \end{array}$	$\begin{array}{\|cc\|} \hline 2,1 & \mathbf{B} \\ & \mathbf{V} \\ \mathbf{O K} \end{array}$	${ }^{3,1} \mathbf{P}$!	4,1

Proof by Resolution

- Unit resolution:

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k} \quad m}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k}}
$$

where ℓ_{i} and m are complementary literals.

- Example:

$$
\frac{P_{1,3} \vee P_{2,2} \quad \neg P_{2,2}}{P_{1,3}}
$$

- We call a clause a disjunction of literals.
- Unit resolution: Clause + Literal $=$ New clause.

Proof by Resolution

- Resolution inference rule (for CNF):
$\frac{\ell_{1} \vee \cdots \vee \ell_{k} m_{1} \vee \cdots \vee m_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}$ where ℓ_{i} and m_{j} are complementary literals.
- Resolution applies only to clauses
- Fact: Every sentence in PL is logically equivalent to a conjunction of clauses.
- Conjunctive Normal Form (CNF): Conjunction of disjunction of literals:
- Example: $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$
- Resolution inference rule (for CNF): sound and complete for propositional logic

Conversion to CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

Conversion to CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$. $\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$
2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

Conversion to CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$. $\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$
2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$. $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)$
3. Move \neg inwards using de Morgans rules and double-negation: $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)$

Conversion to CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$. $\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$
2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$. $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)$
3. Move \neg inwards using de Morgans rules and double-negation: $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)$
4. Apply distributivity law (\vee over \wedge) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Resolution algorithm

function PL-Resolution ($K B, \alpha$) returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic
α, the query, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$
new $\leftarrow\}$
loop do
for each C_{i}, C_{j} in clauses do
resolvents $\leftarrow \mathrm{PL}-\operatorname{Resolve}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true
new \leftarrow new \cup resolvents
if new \subseteq clauses then return false
clauses \leftarrow clauses \cup new

Resolution example

$$
\begin{gathered}
K B=R_{4} \wedge R_{2}=\left(B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}\right) \wedge \neg B_{1,1} \\
\alpha=\neg P_{1,2}
\end{gathered}
$$

Forward/backward chaining

- $K B=$ conjunction of Horn clauses
- Horn clauses: logic proposition of the form: $p_{1} \wedge \ldots \wedge p_{n} \rightarrow q$
- Modus Ponens (for Horn Form): complete for Horn KBs

- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

Forward chaining

Idea:

Fire any rule whose premises are satisfied in the KB, add its conclusion to the $K B$, until query is found

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Forward chaining example

Backward chaining

Idea: Works backwards from the query q

- to prove q by Backward Chaining:
- Check if q is known already, or
- Prove by Backward Chaining all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
- has already been proved true, or
- has already failed

Backward chaining example

Forward vs. Backward

- Forward chaining:
- Data-driven, automatic, unconscious processing,
- May do lots of work that is irrelevant to the goal
- Backward chaining:
- Goal-driven, appropriate for problem-solving,
- Complexity of $B C$ can be much less than linear in size of $K B$

Propositional Logic

- Propositional Logic (PL) is a formal language to describe the world around us.
- Logic can be used by an agent to model the world.
- Sentences in PL have a fixed syntax.
- With symbols and connectives we can form logical sentences:
- Symbols or terms that can be either True or False or unknown.
- Logical connectives

Example: hot \wedge sunny \Rightarrow beach \vee pool

- Syntax and Semantic represent two important and distinct aspects in PL.
- Semantic: configurations/instantiations of the world.

Propositional Logic

- Modus Ponens inference rule:

$$
\frac{p_{1}, \ldots, p_{n}, \quad\left(p_{1} \wedge \ldots \wedge p_{n}\right) \rightarrow q}{q}
$$

- Example:

$$
\begin{aligned}
& \text { Warm } \quad \text { Warm } \rightarrow \text { Sunny } \\
& \text { Sunny }
\end{aligned}
$$

- Modus Ponens deals with Horn clauses
- Horn clauses: logic proposition of the form: $p_{1} \wedge \ldots \wedge p_{n} \rightarrow q$
- Inference: we want an inference algorithm that is:

1. sound (does not infer false formulas), and
2. ideally, complete too (derives all true formulas).

- Inference in PL with horn clauses is sound and complete.

Propositional Logic

- Limits of PL?

1. PL is not expressive enough to describe all the world around us. It can't express information about different object and the relation between objects.
2. PL is not compact. It can't express a fact for a set of objects without enumerating all of them which is sometimes impossible.

- Example: We have a vacuum cleaner (Roomba) to clean a 10×10 squares in the classroom. Use PL to express information about the squares.

Propositional Logic

- The proposition square 1_{1} is_clean expresses information about square1 being clean. How can one write this in a less heavy way?
- How can we express that all squares in the room are clean?
square $_{1 _i s _c l e a n ~} \wedge$ square $_{2 _i s _c l e a n ~} \wedge \ldots \wedge$ square $_{100 _i s _c l e a n ~}$
- How can we express that some squares in the room are clean?

```
square 1_is_clean }\vee\mp@subsup{\mathrm{ square 2_is_clean }\vee ...V square 100_is_clean}{}{1
```

- How can we express that some squares have chairs on them? $s^{\text {square }} 1_{1}$ has_chair \vee square $_{2}$ _has_chair $\vee \ldots \vee$ square $_{100 _h a s _c h a i r ~}$

First Order Logic

- Alternative to PL: Another more powerful language, First Order Logic (FOL).
- Syntax of FOL:
- Terms are either:
* Constants symbols (e.g., A, 10, Columbia),
* Variables (e.g., x, y)
* Functions of terms, e.g., sqrt(x), sum (1,2).
- Atomic formulas: predicates applied to terms, e.g., brother(x,y), above(A,B)
- Connectives: $\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg$
- Equality: =
- Quantifiers: $\forall \exists$
- Connectives, equality, quantifiers can be applied to atomic formulas to create sentences in FOL.

First Order Logic

All squares are clean:

$$
\forall x \operatorname{Square}(x) \Rightarrow C l e a n(x)
$$

There exists some dirty squares:

$$
\exists x \operatorname{Square}(x) \wedge \neg \operatorname{Clean}(x)
$$

Question: Now, can we express that some squares have chairs on top?

Note:

- $\forall x P(x)$ is like $P(A) \wedge P(B) \wedge \ldots$
- $\exists x P(x)$ is like $P(A) \vee P(B) \vee \ldots$
- $\neg \forall x P(x)$ is like $\exists x \neg P(x)$
- $\forall x \exists y \operatorname{likes}(x, y)$ is NOT like $\exists y \forall x \operatorname{likes}(x, y)$

First Order Logic

- All birds fly:

$$
\forall x \operatorname{bird}(x) \Rightarrow \operatorname{Fly}(x)
$$

- All birds except penguins fly:

$$
\forall x \operatorname{bird}(x) \wedge \neg \operatorname{penguin}(x) \Rightarrow \operatorname{Fly}(x)
$$

- Every kid likes candy:

$$
\forall x \operatorname{Kid}(x) \Rightarrow \operatorname{Likes}(x, \operatorname{candy})
$$

- Some kids like candy:

$$
\exists x \operatorname{Kid}(x) \wedge \operatorname{Likes}(x, \operatorname{candy})
$$

- Brothers are sibling:

$$
\forall x, y \operatorname{Brothers}(x, y) \Rightarrow \operatorname{Sibling}(x, y)
$$

- One's mother is one's female parent:

$$
\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow \operatorname{Female}(x) \wedge \operatorname{Parent}(x, y)
$$

First Order Logic

Inference: While a bit more complicated than PL, there are procedures to do inference with a knowledge base of FOL formulas (Further optional reading: book chapter 8, 9).

Natural language: The expressiveness of FOL suggests that it is possible to automate the conversion between natural language and logical expressions. This is very valuable for different applications, such as personal assistants (Siri), question/answering systems, and communicating with computers in general.

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
- Syntax: formal structure of sentences
- Semantics: truth of sentences wrt models
- Entailment: necessary truth of one sentence given another
- Inference: deriving sentences from other sentences
- Soundness: derivations produce only entailed sentences
- Completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Forward, backward chaining are linear in time, complete for Horn clauses Resolution is complete for propositional logic.

Summary

- Building logical agents was a main research trend in AI before the mid-nineties
- Logic is used in AI to represent the environment of the agent and reason about that environment
- Pros and cons of logical agents:
- Do not handle uncertainty, probability does
- Rule-based and do not use data, ML does
- It is hard to model every aspect of the world
+ Intelligibility of models: models are encoded explicitly

John McCarthy

John McCarthy, 1927-2011

- Remember, he coined the term Artificial Intelligence
- He invented Lisp, also invented timeshared computing
- He won the ACM Turing award, and was awarded the Kyoto Prize
- Founder of Logical intelligent systems with declarative knowledge in his seminal paper: "Programs with common sense", 1959.
http://www.nasonline.org/publications/biographical-memoirs/
memoir-pdfs/mccarthy-john.pdf

Credit

- Artificial Intelligence, A Modern Approach. Stuart Russell and Peter Norvig. Third Edition. Pearson Education.
http://aima.cs.berkeley.edu/

